Abstract
The two-dimensional axisymmetric problem of the interaction between smallscale spherical shock waves initiated by a laser explosion and an absolutely rigid surface in the presence of a layer of hot gas is numerically investigated. A number of effects previously observed in physical and numerical experiments [5–8] are confirmed, in particular: the distortion of the reflected shock front and its acceleration on passage through the hot central zone of the laser explosion (lens effect), the strong deformation of this zone, and the formation of a precursor on the surface ahead of the shock wave interacting with the thermal layer. In addition, certain new anomalous effects are revealed: the formation of a pair of “suspended” shocks — one on the periphery of the hot central zone upon interaction with the reflected shock wave and the other behind the “Mach stem” in the triple point zone, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.