Abstract
The recently proposed Spherical Search (SS) algorithm replaces the traditional square search pattern with a spherical boundary to provide position-diverse solutions. The algorithm balances its exploration and exploitation performance by utilizing 2 exploration and exploitation sub-populations of equal size. SS has been proven to be highly competitive. However, we observed that when it is used to solve a variety of problems as well as during different searching stages, the fixed sub-population size limits its adaptability and flexibility for achieving continuous exploitation–exploration balance. The balance potential of two operators with distinct characteristics is underdeveloped. As a result, SS and its advanced variants are prone to still easily falling into local optima and lacks certain performance advantages over peer algorithms. In this paper, we further develop SS and propose a memory-guided population stage-wise control strategy based SS, called SSM. By our proposed memory-guided stage-wise evaluation mechanism, SS evaluates the exploitation–exploration balance extent in real time and thus adaptively optimizes and predicts better resource allocation ratio values between its 2 sub-populations and thus achieves significant performance advantages over peer algorithms. The experiments are conducted on 120 benchmark functions and 22 real-world problems, and the results show that SSM significantly outperforms other 13 state-of-the-art evolutionary algorithms. Additionally, we conduct analyses based on method characteristics, convergence process, solution quality robustness testing, population diversity, exploitation and exploration balance, and computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.