Abstract

It is well-known that the classical univariate orthogonal polynomials give rise to highly efficient Gaussian quadrature rules. We show how the classical orthogonal polynomials can be generalized to a multivariate setting and how this generalization leads to Gaussian cubature rules for specific families of multivariate polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.