Abstract
Let Ue(g) be the simply connected quantized enveloping algebra at roots of one associated to a finite dimensional complex simple Lie algebra g. The De Concini-Kac-Procesi conjecture on the dimension of the irreducible representations of Ue(g) is proved for the representations corresponding to the spherical conjugacy classes of the simply connected algebraic group G with Lie algebra g. We achieve this result by means of a new characterization of the spherical conjugacy classes of G in terms of elements of the Weyl group.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.