Abstract
We consider membranes of spherical topology in uncompactified Matrix theory. In general for large membranes Matrix theory reproduces the classical membrane dynamics up to 1/N corrections; for certain simple membrane configurations, the equations of motion agree exactly at finite N. We derive a general formula for the one-loop Matrix potential between two finite-sized objects at large separations. Applied to a graviton interacting with a round spherical membrane, we show that the Matrix potential agrees with the naive supergravity potential for large N, but differs at subleading orders in N. The result is quite general: we prove a pair of theorems showing that for large N, after removing the effects of gravitational radiation, the one-loop potential between classical Matrix configurations agrees with the long-distance potential expected from supergravity. As a spherical membrane shrinks, it eventually becomes a black hole. This provides a natural framework to study Schwarzschild black holes in Matrix theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.