Abstract

LSH (Locality Sensitive Hashing) is one of the best known methods for solving the c-approximate nearest neighbor problem in high dimensional spaces. This paper presents a variant of the LSH algorithm, focusing on the special case of where all points in the dataset lie on the surface of the unit hypersphere in a d-dimensional Euclidean space. The LSH scheme is based on a family of hash functions that preserves locality of points. This paper points out that when all points are constrained to lie on the surface of the unit hypersphere, there exist hash functions that partition the space more efficiently than the previously proposed methods. The design of these hash functions uses randomly rotated regular polytopes and it partitions the surface of the unit hypersphere like a Voronoi diagram. Our new scheme improves the exponent ρ, the main indicator of the performance of the LSH algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.