Abstract

The effect of indentation strain εi upon hardness H and elastic modulus E of a Ni Double Gyroid (DG) nanolattice was investigated using a spherically-tipped nanoindenter. H remains invariant, while E decreases linearly, with increasing εi. Results reveal the progressive collapse of the DG lattice beneath the indenter. The measured values of H and extrapolated value of E at εi = 0 were used to estimate the yield strength and elastic modulus of the Ni cell walls. The latter was compared with the ideal strength of Ni, nanocrystalline films and of sub-100 nm diameter single crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.