Abstract

Spherical indentation of thick and thin glass plates was investigated numerically and experimentally. The energy release rate at the tip of a cone crack was calculated by using finite element techniques and used to investigate the applicability in thick plates of Roesler's law relating the cone crack radius to the indentation load. Indentations of thin glass specimens resting on different substrates were also studied numerically and experimentally. The stresses in the thin specimens were calculated and correlated with the observed failures. On the basis of these results, a crack initiation mechanism map was developed for glass specimens on different substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.