Abstract

We define the spherical Hecke algebra H for an almost split Kac-Moody group G over a local non-archimedean field. We use the hovel I associated to this situation, which is the analogue of the Bruhat-Tits building for a reductive group. The stabilizer K of a special point on the standard apartment plays the role of a maximal open compact subgroup. We can define H as the algebra of K-bi-invariant functions on G with almost finite support. As two points in the hovel are not always in a same apartment, this support has to be in some large subsemigroup G+ of G. We prove that the structure constants of H are polynomials in the cardinality of the residue field, with integer coefficients depending on the geometry of the standard apartment. We also prove the Satake isomorphism between H and the algebra of Weyl invariant elements in some completion of a Laurent polynomial algebra. In particular, H is always commutative. Actually, our results apply to abstract ''locally finite'' hovels, so that we can define the spherical algebra with unequal parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.