Abstract
AbstractIn this article, we deal with the structure of the spherical Hall algebra $\mathbf{U}$ of coherent sheaves with parabolic structures on a smooth projective curve $X$ of arbitrary genus $g$. We provide a shuffle-like presentation of the bundle part $\mathbf{U}^>$ and show the existence of generic spherical Hall algebra of genus $g$. We also prove that the algebra $\mathbf{U}$ contains the characteristic functions on all the Harder–Narasimhan strata. These results together imply Schiffmann’s theorem on the existence of Kac polynomials for parabolic vector bundles of fixed rank and multi-degree over $X$. On the other hand, the shuffle structure we obtain is new and we make links to the representations of quantum affine algebras of type $A$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.