Abstract
Silicon/carbon composite electrodes are in the spotlight as an anode with a high capacity and a long cycle life. For this purpose, it is important to make a uniformly dispersed composite material. We fabricated spherical composite particles of reduced graphene oxide (rGO) and silicon nanoparticle (Si NP) using a spray drying method. The composite microparticle fabricated by drying the suspended droplets forms a well-agglomerated rGO/Si NP composite and forms a pore structure by crumpled rGO. The rGO/Si NP microparticles were applied as the anode of the lithium-ion battery. We achieved a reversible capacity of 1,246 mAh/g at 1A/g after 200 charge/discharge cycles and a capacity retention of 83%. Considering that the Si NP microparticle without rGO showed a capacity of 365 mAh/g and a retention of 12%, the rGO matrix improves the electrical conductivity and effectively alleviates stress during charge and discharge cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.