Abstract

In this paper, we determine all irreducible spherical functions Φ of any K-type associated to the dual Hermitian symmetric pairs (G, K) = ( SU (3), U (2)) and ( SU (2,1), U (2)). This is accomplished by associating to Φ a vector valued function H = H(u) of a real variable u, analytic at u = 0, which is a simultaneous eigenfunction of two second order differential operators with matrix coefficients. One of them comes from the Casimir operator of G and we prove that it is conjugated to a hypergeometric operator, allowing us to express the function H in terms of a matrix valued hypergeometric function. For the compact pair ( SU (3), U (2)), this project was started in [4].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.