Abstract

Abstract We present a novel semi-analytic solution that describes the propagation of a spherical blast wave driven by a central energy source. The initial density profile has a power-law function of the distance from the center and the energy is injected only into the central region at a rate given by a power-law function of time. This solution is composed of three regions separated by the contact surface and the shock front. The innermost region is assumed to be uniform and the outside of the contact surface includes the shocked matter described by self-similar solutions. We analytically derive the applicable range of parameters of this solution from requirements needed to satisfy the boundary conditions. We perform numerical simulations for flows with various values of parameters, some of which reside out of the thus-derived applicable range, and compare the results with the semi-analytic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.