Abstract

A reductive perturbation technique is employed to solve the fluid-Poisson equations in spherical geometry describing a weakly nonlinear electron–acoustic (EA) waves in unmagnetized plasma consisting of stationary ions, cold electrons and kappa distributed hot electrons. It is shown that a variable coefficient Kadomtsev–Petviashvili (KP) equation governs the evolution of scalar potential describing propagation of EA waves. The influence of suprathermality and geometry effects on propagation of EA solitary waves is investigated. We found that when electrons evolve toward their thermodynamic equilibrium, EA solitons are generated with large amplitudes. Also it is shown that EA solitary structures can be significantly modified by transverse perturbations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call