Abstract

We consider the problem of covering hypersphere by a set of spherical hypercaps. This sort of problem has numerous practical applications such as error correcting codes and reverse k-nearest neighbor problem. Using the reduction of non-degenerated concave quadratic programming (QP) problem, we demonstrate that spherical coverage verification is NP hard. We propose a recursive algorithm based on reducing the problem to several lower dimension subproblems. We test the performance of the proposed algorithm on a number of generated constellations. We demonstrate that the proposed algorithm, in spite of its exponential worst-case complexity, is applicable in practice. In contrast, our results indicate that spherical coverage verification using QP solvers that utilize heuristics, due to numerical instability, may produce false positives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.