Abstract
Point cloud is the most fundamental representation of 3D geometric objects. Analyzing and processing point cloud surfaces is important in computer graphics and computer vision. However, most of the existing algorithms for surface analysis require connectivity information. Therefore, it is desirable to develop a mesh structure on point clouds. This task can be simplified with the aid of a parameterization. In particular, conformal parameterizations are advantageous in preserving the geometric information of the point cloud data. In this paper, we extend a state-of-the-art spherical conformal parameterization algorithm for genus-0 closed meshes to the case of point clouds, using an improved approximation of the Laplace-Beltrami operator on data points. Then, we propose an iterative scheme called the North-South reiteration for achieving a spherical conformal parameterization. A balancing scheme is introduced to enhance the distribution of the spherical parameterization. High quality triangulations and quadrangulations can then be built on the point clouds with the aid of the parameterizations. Also, the meshes generated are guaranteed to be genus-0 closed meshes. Moreover, using our proposed spherical conformal parameterization, multilevel representations of point clouds can be easily constructed. Experimental results demonstrate the effectiveness of our proposed framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.