Abstract

ABSTRACTMonodisperse smooth carbon nanospheres were synthesized via preparation and complex subsequent multistage pyrolysis of spherical melamine formaldehyde copolymer microparticles. The diameters of optained carbon spheres were located between several tens to several hundreds nanometers depending on the size of used initial copolymer particles. During the conversion of copolymer to carbon, the spheres pass strong shrinking of more than 80 % without any deformation. They meet the high quality standards of common prepared and used polymer and silica spheres and are therefore a promising material with great potential. Carbon nanoparticles could be used in a wide range of applications, such as for gas storage, fuel cells, sensing, catalyst support, separation and purification, supercapacitors or lithium-ion batteries, and photonic bandgap materials. Especially for the last mentioned usage monodispersity and a perfect spherical shape are very important. So-called synthetic opals from carbon spheres have been grown by sonic-supported sedimentation and a photonic bandgap in the infrared region has been found. Due to their high thermal resistance under non-oxidizing conditions carbon opals are also suitable as template for inverse opals. The structure of the spheres has been studied during different stages of carbonization by scanning electron microscopy, nuclear magnetic resonance and fourier transform infrared spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.