Abstract

Recent developments of Perturbation Theory (PT), specifically the Effective Field Theory of Large Scale Structure (EFTofLSS) and its equivalents, have proven powerful in analyzing galaxy clustering statistics such as the galaxy power spectrum and bispectrum. To further this pursuit, we have devised a novel spherical-bispectrum visualization scheme that collapses configuration dependencies to highlight the scale dependence of the bispectrum. The resulting one-dimensional curves facilitate the comparison between different bispectra, for example, from simulation and PT calculation. Using the new scheme, we present a quantitative analysis of the accuracy of PT modeling by comparing PT's analytical prediction to the result from a suite of Quijote simulations. Specifically, we determine k NL, the wavenunmber below which the analytical prediction matches well with the N-body result by inspectingboth leading order (LO) and next-to-leading order (NLO) power spectrum and bispectrum at redshifts z = 0, 0.5, 1, 2, 3. We also quantify the binning effect in Fourier space and show that an appropriate correction must be applied to the analytic predictions in order to compare them with the discrete Fourier transform results obtained from N-body-simulation or real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.