Abstract

We first construct nonholonomic systems of $n$ homogeneous balls $\mathbf B_1,\dots,\mathbf B_n$ with centers $O_1,...,O_n$ and with the same radius $r$ that are rolling without slipping around a fixed sphere $\mathbf S_0$ with center $O$ and radius $R$. In addition, it is assumed that a dynamically nonsymmetric sphere $\mathbf S$ of radius $R+2r$ and the center that coincides with the center $O$ of the fixed sphere $\mathbf S_0$ rolls without slipping over the moving balls $\mathbf B_1,\dots,\mathbf B_n$. We prove that these systems possess an invariant measure. As the second task, we consider the limit, when the radius $R$ tends to infinity. We obtain a corresponding planar problem consisting of $n$ homogeneous balls $\mathbf B_1,\dots,\mathbf B_n$ with centers $O_1,...,O_n$ and the same radius $r$ that are rolling without slipping over a fixed plane $\Sigma_0$, and a moving plane $\Sigma$ that moves without slipping over the homogeneous balls. We prove that this system possesses an invariant measure and that it is integrable in quadratures according to the Euler-Jacobi theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.