Abstract

The cosmological remnants of a first-order phase transition generally depend on the perturbations that the walls of expanding bubbles originate in the plasma. Several of the formation mechanisms occur when bubbles collide and lose their spherical symmetry. However, spherical bubbles are often considered in the literature, in particular for the calculation of gravitational waves. We study the steady state motion of bubble walls for different bubble symmetries. Using the bag equation of state, we discuss the propagation of phase transition fronts as detonations and subsonic or supersonic deflagrations. We consider the cases of spherical, cylindrical and planar walls, and compare the energy transferred to bulk motions of the relativistic fluid. We find that the different wall geometries give similar perturbations of the plasma. For the case of planar walls, we obtain analytical expressions for the kinetic energy in the bulk motions. As an application, we discuss the generation of gravitational waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.