Abstract
We establish a precise relation between the modular bootstrap, used to con- strain the spectrum of 2D CFTs, and the sphere packing problem in Euclidean geometry. The modular bootstrap bound for chiral algebra U(1)c maps exactly to the Cohn-Elkies linear programming bound on the sphere packing density in d = 2c dimensions. We also show that the analytic functionals developed earlier for the correlator conformal bootstrap can be adapted to this context. For c = 4 and c = 12, these functionals exactly repro- duce the “magic functions” used recently by Viazovska [1] and Cohn et al. [2] to solve the sphere packing problem in dimensions 8 and 24. The same functionals are also applied to general 2D CFTs, with only Virasoro symmetry. In the limit of large central charge, we relate sphere packing to bounds on the black hole spectrum in 3D quantum gravity, and prove analytically that any such theory must have a nontrivial primary state of dimension {Delta}_0underset{sim }{<}c/mathrm{8.503.}
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.