Abstract
Abstract For barotropic flow in spherical geometry, the ideal potential vorticity staircase with flat steps and vertical risers exhibits a relationship between prograde jet strength and spacing such that, for regular spacing, the distance between adjacent jets is given by a suitably defined “Rhines scale” multiplied by a positive constant equal to . This result was obtained previously by the author in the equatorial limit of spherical geometry and by others in periodic beta-plane geometry. An improved asymptotic method has been devised to explain the strength–spacing relationship in sphere-filling solutions. This analysis explains the approximate validity of the equatorial asymptotics and yields new insight on minimum energy states and staircase mode transitions simulated in the presence of random, persistent energy inputs at high horizontal wavenumber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.