Abstract
The practical applications of alkaline zinc-based batteries are challenged by poor rechargeability with an insufficient zinc utilization ratio. Herein, a sphere-confined reversible zinc deposition behavior from a free-standing Zn anode is reported, which is composed of bi-continuous ZnO-protected interconnected and hollowed Zn microspheres by theKirkendall effect. The cross-linked Zn network with in situ formed outer ZnO shell and inner hollow space not only inhibits side reactions but also ensures long-range conductivity and accommodates shape change, which induces preferential reversible zinc dissolution-deposition process in the inner space and maintains structural integrity even under high zinc utilization ratio. As a result, the Zn electrode can be stably cycled for 390h at a high current density of 20mA cm-2 (60% depth of discharge), outperforming previously reported alkaline Zn anodes. A stable zinc-nickel oxide hydroxide battery with a high cumulative capacity of 8532 mAh cm-2 at 60% depth of discharge is also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.