Abstract

AbstractWe model a massless viscous disk using smoothed particle hydrodynamics (SPH) and note that it evolves according to the Lynden-Bell & Pringle (1974) theory until a non-axisymmetric instability develops at the inner edge of the disk. This instability may have the same origin as the instability of initially axisymmetric viscous disks discussed by Lyubarskij, Postnov & Prokhorov (1994). To clarify the evolution we evolved single and double rings of particles. It is actually inconsistent with the SPH scheme to set up a single ring as an initial condition because SPH assumes a smoothed initial state. As would be expected from an SPH simulation, the ring rapidly breaks up into a band. We analyse the stability of the ring and show that the predictions are confirmed by the simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.