Abstract

AbstractThe paper presents a 2‐D large eddy simulation (LES) modelling approach to investigate the properties of the plunging waves. The numerical model is based on the smoothed particle hydrodynamics (SPH) method. SPH is a mesh‐free Lagrangian particle approach which is capable of tracking the free surfaces of large deformation in an easy and accurate way. The Smagorinsky model is used as the turbulence model due to its simplicity and effectiveness. The proposed 2‐D SPH–LES model is applied to a cnoidal wave breaking and plunging over a mild slope. The computations are in good agreement with the documented data. Especially the computed turbulence quantities under the breaking waves agree better with the experiments as compared with the numerical results obtained by using the k–ε model. The sensitivity analyses of the SPH–LES computations indicate that both the turbulence model and the spatial resolution play an important role in the model predictions and the contributions from the sub‐particle scale (SPS) turbulence decrease with the particle size refinement. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.