Abstract

Carboxypeptidase A (EC.3.4.17.1) is a zinc-containing proteolytic enzyme that removes the C-terminal amino acid from a peptide chain with the free carboxylate-terminal. In this study, the effect of spermine interaction on the structure and thermal stability of Carboxypeptidase A was investigated by ultraviolet − visible spectroscopy, fluorescence spectroscopy, circular dichroism, Kinetic measurement, molecular docking and simulation studies have also been followed at the pH of 7.5. The transition temperature of Carboxypeptidase A, as a criterion of protein thermal stability, in the presence of spermine was enhanced by increasing the concentration of spermine. The results of fluorescence intensity changes, at two temperatures of 308 and 318 K, also suggested that spermine had a great ability to quench the fluorescence of Carboxypeptidase A through the static quenching procedure. The thermodynamic parameters changes, including standard Gibbs free-energy, entropy and enthalpy, showed that the binding of spermine to Carboxypeptidase A was spontaneous and the hydrogen bonding and van der Waals interactions played a major role in stabilizing the Carboxypeptidase A–spermine complex. The changes in the content of the α-helix and the β-sheet of the Carboxypeptidase A with binding to spermine were shown by the CD spectra method. Further, kinetic studies revealed that by increasing concentration of spermine, the activity of Carboxypeptidase A was enhanced. Also, the docking study revealed that the hydrogen bonding and van der Waals interactions played a major role in stabilizing the Carboxypeptidase A–spermine complex. As a result, spermine could be considered as an activator and a stabilizer for Carboxypeptidase A.Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call