Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a rapidly emerging bacteria causing infection, which has developed resistance to most of the beta-lactam antibiotics because of newly acquired low-affinity penicillin-binding protein (PBP2a), which can continue to build the cell wall when beta-lactams block other PBPs. Exogenous spermine exerts a dose-dependent inhibition effect on the growth of Escherichia coli, Salmonella enterica serovar, and S. aureus. Selection of an MRSA Mu50 derivative which harbors mutation on PBP2 gene (named as MuM) showing spermine resistance and which confers a complete abolishment of spermine-beta-lactam synergy was identified. To further investigate the gene expression changes, a transcriptome profiling of MuM against Mu50 (wild-type) without any treatment, MuM and Mu50 in response to high dose spermine and Mu50 in response to spermine-beta-lactam synergy at 15, 30 and 60min time points was performed. Functional annotation was further performed to delineate the metabolic pathways associated with the significant genes. A significant down-regulation in the iron regulatory system, potassium channel uptake and polyamine transport system with an up-regulation in general stress response sigB dependent operon in MuM strain at 15, 30 and 60min time points with spermine treatment compared to Mu50 strain was observed. Analysis of spermine-dependent synergy with beta-lactams on cell wall synthesis revealed that it significantly reduces the degree of cross-linkage on cell wall with no change in trypsin digestion pattern of purified PBPs and without affecting PBPs expression or PBPs acylation by Bocillin. A strong relation between PBP2 protein and general stress sigB response, iron, potassium and polyamine transport systems was observed. SigB regulon should be activated on stress, which was not seen in some of our previous studies where it was down-regulated in wild-type Mu50 strain with spermine stress. Here, an intriguing finding is made where there seems to be a correction of this abnormal response of no SigB induction to a significant induction by PBP2 mutation. In MuM strain, a significant down-regulation of KdpABC operon genes at 15, 30 and 60min time points on spermine stress is seen, which seems to be absent without spermine treatment. Since KCL has been found to protect the cell against spermine stress in wild-type strain by induction of KdpABC operon, it fails to do so in MuM strain underlying the importance of PBP2 protein in spermine stress. Analysis of spermine-dependent synergy with beta-lactams on cell wall synthesis revealed that it significantly reduces the degree of cross-linkage on cell wall with no change in trypsin digestion patterns of purified PBPs and without affecting PBPs expression or PBPs acylation by Bocillin. Furthermore, spermine does not help in enhancing the binding of beta-lactams to PBPs and binding of spermine to PBPs does not cause conformational changes to PBPs, as tested with trypsin digestion patterns. Future studies on the molecular mechanism of spermine interactions with these systems hold great potential for the development of new therapeutics for MRSA infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.