Abstract

AimsOxidative stress is considered to be one of the culprits of ovarian dysfunction. Spermidine (SPD) is a natural aliphatic polyamine that is widely present in living organisms and has been shown to exert preventive effects on various ageing-related diseases. This study seeks to investigate the potential preventive and protective effects of SPD on ovarian oxidative damage. Main methodsOvarian oxidative stress model in C57BL/6 mice was established by 3-nitropropionic acid. Female mice were administrated 10 mg/kg or 15 mg/kg SPD. The estrous cycle, serum hormone levels and mating test were measured to evaluate ovarian function. Follicle counts and AMH levels to assess ovarian reserve. Masson's trichrome to assess ovarian fibrosis. TUNEL analysis to evaluate follicular granulosa cells (GCs) apoptosis. Oxidative stress and autophagy indicators (Nrf2, HO-1, GPX4, LC3B, P62) were measured in vivo and in vitro. RNA-sequencing was performed on SPD-treated GC to study the effects of SPD on Akt and FHC/ACSL4 signaling. Key findingsSPD supplementation improved ovarian endocrine function and reproductive capacity in oxidative stress mice. SPD regularized the estrous cycle and alleviated oxidative stress. Furthermore, SPD increased the ovarian reserve, reducing GC apoptosis by activating the Nrf2/HO-1/GPX4 pathway. RNA-sequencing showed that SPD induced 230 genes changes in porcine GC, which were mainly involved in oocyte meiosis, arginine biosynthesis and glutathione metabolism pathways. SPD attenuated H2O2-induced ferroptosis by regulating Akt/FHC/ACSL4 signaling. SignificanceSPD alleviates oxidative stress and ferroptosis by regulating the Nrf2/HO-1/GPX4 and Akt/FHC/ACSL4 pathway, which may be a novel potential strategy to protect ovarian oxidative damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call