Abstract
Deterioration of seeds is an important problem leading to low germination and uneven crop establishment causing poor crop growth and productivity. Soil salinity is another factor limiting crop cultivation. Spermidine (Spd) is a compound widely reported for diminishing adverse effects of salt stress in plants. In this study, the effects of Spd priming on normal and deteriorated rice seeds were investigated under salt stress during germination and young seedling stages. Rice seeds were primed with H2O and Spd solutions for 24 h before germination. All rice seeds were grown in Petri dishes containing 5 ml of deionized water with 0 (control) or 150 mM NaCl (salt treatment) for 1-10 d. The results showed that priming groups had higher germination percentage (GP) and germination index (GI) in both normal and deteriorated seeds. Moreover, deteriorated seeds primed with 0.5, 1.0 and 1.5 mM Spd showed significantly higher GP and GI than H2O-primed and non-primed seeds. During early hours of hydration, Spd-primed seeds produced reactive oxygen species (ROS) faster and at higher level than non-priming and H2O priming groups in both control and saline conditions. Earlier accumulation of ROS was associated with more rapid germination. In young seedlings, salinity stress caused a marked decrease in growth and increased membrane damage indicated by higher malondialdehyde (MDA) and electrolyte leakage (EL). Conversely, Spd priming increased growth and reduced membrane damage of rice seedlings established from normal and deteriorated seeds under salt stress. The finding suggested that Spd priming can effectively improve germination of deteriorated seeds and enhance seedling growth under control and salt stress conditions.
Highlights
Salinity causes a limitation of plant growth, development and production of crops around the globe
The results showed that priming groups had higher germination percentage (GP) and germination index (GI) in both normal and deteriorated seeds
Salinity stress caused a marked decrease in growth and increased membrane damage indicated by higher malondialdehyde (MDA) and electrolyte leakage (EL)
Summary
Salinity causes a limitation of plant growth, development and production of crops around the globe. In Thailand, salinity is one of serious problems in agricultural areas and productivity of rice which is a very important economic crop of the country. Salt stress induces osmotic stress as a result of water deficit followed by ion toxicity effect resulting from excessive uptake and accumulation of sodium and chloride ions leading to oxidative stress due to high production of reactive oxygen species (ROS) (Munns and Tester, 2008). Received in revised form: 27 Jan 2021. From Volume 49, Issue 1, 2021, Notulae Botanicae Horti Agrobotanici Cluj-Napoca journal will use article numbers in place of the traditional method of continuous pagination through the volume. The journal will continue to appear quarterly, as before, with four annual numbers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.