Abstract

Given that spermidine is associated with aging-related diseases and it is a potential target for delaying aging, functional studies on supraphysiological levels of spermidine are required. Our previous studies showed that the granulosa layer arranged irregular and the follicular oocytes were shrunk in female mice injected intraperitoneally with spermidine at 150 mg/kg (Body weight) after 24 h. It indicated that supraphysiological levels of spermidine induced ovarian damage in female mice. The objective of this study was to investigate the effect of acute administration of supraphysiological spermidine on the ovary and granulosa cells in mice. The results showed that treatment with spermidine at 150 mg/kg (intraperitoneal) significantly increased the levels of both H2O2 and malondialdehyde and reduced total antioxidant capacity and the activities of catalase and superoxide dismutase in mouse ovaries. The contents of putrescine and spermine increased significantly in the ovaries of mice treated with spermidine. Treatment with spermidine at 150 mg/kg increased the apoptotic rate and reactive oxygen species levels of granulosa cells in mouse ovaries. Furthermore, the protein expression of P53, CASPASE 8 (Cleaved/Pro), CASPASE 9 (Cleaved/Pro) and CASPASE 3 (Cleaved/Pro) in granulosa cells of mice treated with spermidine were significantly upregulated, while BCL2 expression was significantly downregulated. In summary, our study demonstrates for the first time that spermidine at supraphysiological doses causes ovarian oxidative stress and induces granulosa cell apoptosis via the P53 and/or BCL2-CASPASEs pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.