Abstract

We previously reported postacrosomal sheath WW domain binding protein (PAWP) as a candidate sperm borne, oocyte-activating factor. PAWP enters the oocyte during fertilization and induces oocyte activation events including meiotic resumption, pronuclear formation, and egg cleavage. However, in order to provide proof that PAWP is a primary initiator of zygotic development it is imperative to show that PAWP initiates intracellular calcium signaling, which is considered essential for oocyte activation. Utilizing Xenopus laevis as our model, we injected recombinant PAWP or Xenopus sperm into metaphase II-arrested oocytes and observed a significant rise in intracellular calcium levels over controls. Concurring intensities and durations of PAWP and sperm-induced calcium waves, detected by infrared two-photon laser-scanning fluorescence microscopy, were prevented by coinjection of a competitive PPGY-containing peptide derived from PAWP but not by the point-mutated form of this peptide. This study also correlates PAWP and sperm-induced calcium release with meiotic resumption in Xenopus. The similar mode of oocyte activation, and the ability of the competitive peptide in blocking both sperm- and PAWP-induced calcium release, provide evidence for the first time that sperm-anchored PAWP is a primary initiator of zygotic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.