Abstract

The critically endangered Chinese sturgeon, Acipenser sinensis, presents late sexual maturity and has a large body size. Germ cell transplantation is a powerful technique for the production of gametes from large-bodied species in closely related recipients with a smaller body size and shorter generation time. To accelerate reproduction of Chinese sturgeon, donor spermatogonia collected from the cryopreserved testes of 3-year-old Chinese sturgeon were intraperitoneally transplanted into 7-8 days post-hatch larvae of Yangtze sturgeon (Acipenser dabryanus) with shorter generation interval. At 2 months post-transplantation (mpt), donor spermatogonia had colonized in the 81.25% of recipient gonads, with average numbers about two times those of endogenous primordial germ cells. Within the next 2 months, the rate of endogenous germ cell division in females (2-3 times) was faster than that in males (once), whereas colonized donor-derived spermatogonia divided about 2-3 times and twice in recipient females and males, respectively. Furthermore, the expression of germ cell-related genes, dazl, dead end, and vasa, in transplanted fish was higher than that in non-transplanted fish, suggesting the incorporation and proliferation donor spermatogonia in recipient. At 18 mpt, donor-derived spermatogonia survived in the 75.00% of recipient gonads. These results showed that the somatic microenvironment of Yangtze sturgeon gonad can support the long-term colonization, proliferation, and survival of xenogeneic germ cells. Thus, this study suggested that small-bodied Yangtze sturgeon is promising recipient as surrogate for Chinese sturgeon gamete production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call