Abstract

Spermatogenesis is a complex series of processes that involves (1) the maintenance of a renewable pool of diploid stem cells within a niche, (2) the mitotic expansion of a subpopulation of stem cells committed to the spermatogenic pathway, and (3) the differentiation of diploid cells into highly specialized, haploid spermatozoa through meiotic and post-meiotic cellular transformations. Drosophila melanogaster is a desirable model for studying spermatogenesis, as similarities exist between mammalian and fly spermatogenesis. Like mammals, flies maintain a spermatogenic stem cell niche; the steps involved in mammalian spermatogenesis are mimicked in flies, with the main difference being that fly sperm develop within cysts rather than an epithelial cell layer. Here, we report a reliable robust system for culturing whole testes and individual spermatogenic cysts obtained from mid- to late-pupal stages of Drosophila pseudoobscura. D. pseudoobscura testes can be easily distinguished in later pupal stages because of their intense red pigmentation and are easily handled because of their simple ellipsoidal morphology. Cultured cysts are comparable in length to cysts obtained from adult flies, and motility is consistently achieved in vitro. This system not only offers a method for dissecting the mechanisms involved in meiotic and post-meiotic cellular transformations, but also can be used for the study of signaling during spermatogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call