Abstract

In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex.

Highlights

  • During either sperm or oocyte production, meiotic chromosomes undergo a continuum of similar events that are tightly regulated by the cell cycle

  • Spermatogenesis rapidly produces many small, motile sperm with highly protected chromatin, while oogenesis occurs at a slower rate to yield fewer large, immobile, nutrient-rich oocytes

  • We provide a detailed molecular analysis of key landmark events of spermatogenesis and identify spermatogenesis-specific features of meiosis in the model organism C. elegans

Read more

Summary

Introduction

During either sperm or oocyte production, meiotic chromosomes undergo a continuum of similar events that are tightly regulated by the cell cycle. Meiosis starts with an extended G2 phase called meiotic prophase in which chromosomes first shorten (leptotene), pair and assemble synaptonemal complexes (SC) (zygotene) before completing recombination (pachytene). Chromosomes disassemble their SC (diplotene) and fully condense their bivalents (diakinesis). A subsequent transition from G2 to M is mediated by cell cycle kinases, including POLO and cdk-cyclin B, which drive nuclear envelope breakdown (NEBD), meiotic spindle assembly, and chromosome remodeling. Proper meiotic segregation necessitates the combined activities of several regulatory proteins, including the Aurora B kinase [1,2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.