Abstract

Spermatogenesis creates functional sperm from an initially undifferentiated germ cell. In the nematode Caenorhabditis elegans, both males and hermaphrodites engage in spermatogenesis. The hermaphrodite germ line, like that of the male, initiates spermatogenesis during the L4 larval stage. The hermaphrodite germ line differs from that of the male because it ceases spermatogenesis and switches to oogenesis during the adult stage. Each hermaphrodite stores her sperm and uses them to fertilize her oocytes. Many mutants have been identified where hermaphrodite self-fertility is disrupted. If such a self-sterile hermaphrodite is mated to a wild-type male, mutant hermaphrodites that either lack sperm or contain defective sperm will produce outcross progeny. Easily implemented tests are then applied to identify the subset of these mutants that produce defective sperm. Currently, more than 44 genes are known that are required for normal spermatogenesis. This chapter discusses the 25 best-understood genes that affect spermatogenesis and mutants are grouped based on the cellular structure or process that is affected. C. elegans spermatozoa lack an acrosome and a flagellum, which are organelles found in the spermatozoa produced by most other species. Like other nematodes, C. elegans spermatozoa move by crawling using a single pseudopod. Wild-type spermatogenesis and its defects in mutants can be studied in vivo because the animal is transparent and in vitro because a simple, chemically defined medium that supports development has been discovered. Unlike nearly all other C. elegans cells, homogeneous sperm can be obtained in sufficient quantities to permit biochemical analyses.

Highlights

  • Spermatogenesis is the process that creates sperm from initially undifferentiated germ cells

  • While C. elegans spermatogenesis occurs in males, it occurs during a stage of germline development in the hermaphrodite prior to the onset of oogenesis

  • The cytologically obvious structures that segregate into spermatids during budding include its nucleus, multiple mitochondria and multiple specialized lysosome-like organelles named fibrous body-membranous organelles (FB-MOs)

Read more

Summary

Overview

Spermatogenesis is the process that creates sperm from initially undifferentiated germ cells (see Sex determination in the germ line). In diocious animals, this process occurs exclusively in males. While C. elegans spermatogenesis occurs in males, it occurs during a stage of germline development in the hermaphrodite prior to the onset of oogenesis (see Sex determination in the germ line). This chapter focuses on genes that are sperm-specific regulators, and genes affecting germline development more generally are described elsewhere (see Sex determination in the germ line, RNA-binding proteins, Germline proliferation and its control and Specification of the germ line)

Wild-type spermatogenesis
Identification of spermatogenesis defective mutants
Translational control during spermatogenesis
Mutants that affect sperm meiosis
Mutants affecting FB-MOs
Cytoskeletal mutants
Sex-specific aspects of spermiogenesis
Fertilization mutants
10. Post-fertilization mutants
11. Future prospects
13. References
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.