Abstract

AbstractSelection of high‐quality sperm is crucial to assisted reproduction. However, conventional clinical methods for sperm selection are manual and prone to operator errors. This article presents ‘sperm syringe', a scalable technology that mimics the highly parallelized 3D selection process in vivo via a 3D network of 560 microchannels to select high‐quality sperm. Sperm syringe retrieves more than 41% of healthy sperm from the initial sperm sample in under 15 min, providing a sufficient volume (≈500 µL) and number (1,600,000) of high‐quality sperm for fertility treatments. Experiments with bull and human sperm indicate 65% improvement in selected sperm morphology and DNA integrity, considerably outperforming the current best clinical practices. This approach enables the selection of a subpopulation of high‐quality human sperm from an oligozoospermia sample with DNA integrity below the reference value for fertility. The fabrication method of the device is also simple and scalable, representing a commercially viable technology for translation and clinical adoption. Sperm syringe provides a promising opportunity for clinics to use less invasive assisted reproductive technologies (ARTs) over intracytoplasmic sperm injection, thus reducing the associated clinical workload and optimizing long‐term health outcomes for ART‐conceived children.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call