Abstract

Annexins are a family of Ca(2+)-binding proteins involved in the exocytotic process. The presence and the role of annexins in mammalian spermatozoa have not been well established. Two annexin-like proteins were obtained from guinea pig testis, a doublet of Mr 31-33 kD (p31/33) and a protein of Mr 50 kD (p50). Both proteins were able to bind to erythrocyte ghosts in a Ca(2+)-dependent fashion. Polyclonal antibodies against p31/33 reacted with two major proteins, Mrs 50 kD (sp50) and 42 kD (sp42), from mature and immature guinea pig spermatozoa. p50 and sp50 are likely the native proteins from testis and spermatozoa, respectively, and they are seemingly related. By immunofluorescence, sp50 was only found in the acrosome region of immature and capacitated and noncapacitated spermatozoa, and its location was intracellular. In spermatozoa undergoing acrosome reaction, sp50 was detected in the whole acrosome, while in spermatozoa that had undergone acrosome reaction sp50 was not detected. However, in the protein pattern of acrosome reaction vesicles, anti-p31/33 antibody revealed diffuse bands of Mr 35-38 kD. sp50 was able to bind to plasma membrane fragments and acrosome outer membrane from demembranated sperm in a Ca(2+)-dependent fashion. The presence of sp50 in the acrosome region, its distribution throughout the acrosome membrane just before the acrosome reaction, and its ability to bind both plasma and outer acrosome membranes in a Ca(2+)-dependent manner suggest that sp50 may participate in the acrosome reaction mechanism in guinea pig spermatozoa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.