Abstract

Sperm respond to multiple cues during guidance to the egg including chemical attractants, temperature, and fluid flow. Of these, sperm chemotaxis has been studied most extensively-over 100years-but only recently has it started to be understood at the molecular level. The long gestation in this understanding has largely been due to technical limitations that include the detection of calcium signal dynamics in a relatively small structure-the flagellum, measurement of actual chemoattractant gradients, the fact that only subpopulations of sperm respond at any given time, and the diversity in swimming behaviors that sperm exhibit from different species. Today, measurements of flagellar calcium signals on a fast time scale, discovery of the ion channels and organelles that may regulate these signals, and better understanding and quantitation of sperm swimming behaviors involved have given more certainty to our understanding of sperm directional swimming and its control by characteristic, calcium-directed asymmetric flagellar bends. Future research will need to apply these technical advances to other forms of sperm guidance such as thermotaxis and rheotaxis as well as gaining an understanding of how the flagellar apparatus is controlled by calcium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call