Abstract

Sperm from different species have evolved distinctive motility structures, including tubulin-based flagella in mammals and major sperm protein (MSP)-based pseudopods in nematodes. Despite such divergence, we show that sperm-specific PP1 phosphatases, which are required for male fertility in mouse, function in multiple processes in the development and motility of Caenorhabditis elegans amoeboid sperm. We used live-imaging analysis to show the PP1 phosphatases GSP-3 and GSP-4 (GSP-3/4) are required to partition chromosomes during sperm meiosis. Postmeiosis, tracking fluorescently labeled sperm revealed that both male and hermaphrodite sperm lacking GSP-3/4 are immotile. Genetic and in vitro activation assays show lack of GSP-3/4 causes defects in pseudopod development and the rate of pseudopodial treadmilling. Further, GSP-3/4 are required for the localization dynamics of MSP. GSP-3/4 shift localization in concert with MSP from fibrous bodies that sequester MSP at the base of the pseudopod, where directed MSP disassembly facilitates pseudopod contraction. Consistent with a role for GSP-3/4 as a spatial regulator of MSP disassembly, MSP is mislocalized in sperm lacking GSP-3/4. Although a requirement for PP1 phosphatases in nematode and mammalian sperm suggests evolutionary conservation, we show PP1s have independently evolved sperm-specific paralogs in separate lineages. Thus PP1 phosphatases are highly adaptable and employed across a broad range of sexually reproducing species to regulate male fertility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.