Abstract

Despite the beneficial effects of sperm cryopreservation, increased reactive oxygen species (ROS) production during this process can affect spermatozoon structure and function. Moreover, ROS production is associated with elevated DNA damage and alterations in DNA methylation. There is little information about the effects of cryopreservation on epigenetic modulation in sperm and the health of children born with frozen spermatozoa. Considering the potential consequences of cryopreservation in ART-conceived children, it is necessary to assure that cryopreservation does not modify sperm DNA methylation status. This review summarizes reports on epigenetic modifications of spermatozoa during cryopreservation and the probable effects of this process on offspring health. Contradictory results have reported the influence of sperm cryopreservation on DNA methylation in imprinted genes. Multiclinical studies with larger sample sizes under the same conditions of cryopreservation and DNA methylation analysis are needed to make any definitive conclusion about the effect of the cryopreservation process on sperm DNA methylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.