Abstract

BackgroundUsing information from physics, biomechanics and evolutionary biology, we explore the implications of physical constraints on sperm performance, and review empirical evidence for links between sperm length and sperm competition (where two or more males compete to fertilise a female's eggs). A common theme in the literature on sperm competition is that selection for increased sperm performance in polyandrous species will favour the evolution of longer, and therefore faster swimming, sperm. This argument is based on the common assumption that sperm swimming velocity is directly related to sperm length, due to the increased thrust produced by longer flagella.ResultsWe critically evaluate the evidence for links between sperm morphology and swimming speed, and draw on cross-disciplinary studies to show that the assumption that velocity is directly related to sperm length will rarely be satisfied in the microscopic world in which sperm operate.ConclusionWe show that increased sperm length is unlikely to be driven by selection for increased swimming speed, and that the relative lengths of a sperm's constituent parts, rather than their absolute lengths, are likely to be the target of selection. All else being equal, we suggest that a simple measure of the ratio of head to tail length should be used to assess the possible link between morphology and speed. However, this is most likely to be the case for external fertilizers in which females have relatively limited opportunity to influence a sperm's motility.

Highlights

  • Using information from physics, biomechanics and evolutionary biology, we explore the implications of physical constraints on sperm performance, and review empirical evidence for links between sperm length and sperm competition

  • Insight from physics We argue that the complex physical constraints governing sperm locomotion may obscure simple relationships between sperm length and swimming velocity, accounting for the inconsistent patterns of covariance between these traits reported in the literature

  • We argue that the rather confusing patterns reported in the literature are due to the use of single measures of sperm length, and that accounting for the balance between drag from the head and thrust from the flagellum will allow us to extend our understanding of the link between sperm form and function

Read more

Summary

Introduction

Using information from physics, biomechanics and evolutionary biology, we explore the implications of physical constraints on sperm performance, and review empirical evidence for links between sperm length and sperm competition (where two or more males compete to fertilise a female's eggs). Several theories regarding the evolution of sperm size exist [for reviews see [1,2]], there is a general assumption in the literature on sperm competition that selection will favour males with longer sperm, due to their enhanced swimming velocity and competitiveness. [3,4,5]] These evolutionary associations are generally taken as evidence that selection for enhanced sperm competitive ability favours increased sperm length in polyandrous species, where females mate with more than one male during a single reproductive episode and sperm from different males must compete to fertilize available ova [6]. Four studies have reported that sperm swimming velocity, and possibly sperm compet-

Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.