Abstract

BackgroundA fundamental challenge in evolutionary biology is to resolve the mechanisms that maintain paternity a hypervariable fitness component. Because females are often sexually promiscuous, this challenge hinges on establishing the mechanisms through which the ejaculates of different males compete for fertilisation (sperm competition). The competitive quality of an ejaculate is mediated by the relative number of live sperm and their motile performance. The differential rate at which rival ejaculates lose their fertilising efficiency over time is therefore expected to influence the outcome of sperm competition.ResultsHere, we artificially inseminated into sets of replicate domestic hens, Gallus gallus domesticus, experimentally engineered heterospermic ejaculates containing a large number of low-quality sperm from one male, and a lower number of high-quality sperm from another male. Large, low-quality ejaculates fertilised the first eggs produced after insemination, but small, high-quality ejaculates prevailed in the long run despite their numerical disadvantage.ConclusionTogether, these results provide the first experimental demonstration that the relative competitive value of an ejaculate changes drastically over the time during which competing ejaculates are stored within the reproductive tract of a female, resulting in a marked temporal pattern of variation in paternity. A high level of replication makes these results robust. However, our study was restricted to few males of a well characterised study population, and future work should explore the generality of these results.

Highlights

  • A fundamental challenge in evolutionary biology is to resolve the mechanisms that maintain paternity a hypervariable fitness component

  • In the majority of sexually reproducing species, the ejaculates of different males can compete to fertilise the eggs of a female, a process called sperm competition, and recent evidence indicates that a large source of variation in paternity can be determined by sperm competition dynamics after insemination [2,3,4,5,6,7,8,9,10]

  • In the 2:1 treatment, we would expect the low-mobility ejaculate to fertilise two thirds of the eggs, this rate was only approached for the eggs produced on the first day following an insemination

Read more

Summary

Introduction

A fundamental challenge in evolutionary biology is to resolve the mechanisms that maintain paternity a hypervariable fitness component. The prevailing experimental approach has been to study the extent to which the characteristics of rival ejaculates, such as size and quality, measured at ejaculation, predict the share in paternity of all of the offspring produced by the inseminated female over a given period of time following insemination. Such an overall measure of reproductive success fails to reveal timedependent variation in the relative fertilising efficiency of competing ejaculates. We experimentally study the rate at which rival ejaculates of varying size and quality accumulate fertilisation success over sperm storage time in an avian model system, the domestic fowl, Gallus gallus domesticus

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.