Abstract

Several empirical studies of sperm competition in populations polymorphic for a driving X chromosome have revealed that Sex-ratio males (those carrying a driving X) are at a disadvantage relative to Standard males. Because the frequency of the driving X chromosome determines the population-level sex ratio and thus alters male and female mating rates, the evolutionary consequences of sperm competition for sex chromosome meiotic drive are subtle. As the SR allele increases in frequency, the ratio of females to males also increases, causing an increase in the male mating rate and a decrease in the female mating rate. While the former change may exacerbate the disadvantage of Sex-ratio males during sperm competition, the latter change decreases the incidence of sperm competition within the population. We analyze a model of the effects of sperm competition on a driving X chromosome and show that these opposing trends in male and female mating rates can result in two coexisting locally stable equilibria, one corresponding to a balanced polymorphism of the SR and ST alleles and the second to fixation of the ST allele. Stochastic fluctuations of either the population sex ratio or the SR frequency can then drive the population away from the balanced polymorphism and into the basin of attraction for the second equilibrium, resulting in fixation of the SR allele and extinction of the population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.