Abstract

In intracytoplasmic sperm injection (ICSI), a single sperm cell is selected and injected into an egg. The quality of the chosen sperm and specifically its DNA fragmentation have a significant effect on the fertilization success rate. However, there is no method today to measure the DNA fragmentation of live and unstained cells during ICSI. We present a new method to predict the DNA fragmentation of sperm cells using multi-layer stain-free imaging data, including quantitative phase imaging, and lightweight deep learning architectures. The DNA fragmentation ground truth is achieved by staining the cells with acridine orange and imaging them via fluorescence microscopy. Our prediction model is based on the MobileNet convolutional neural network architecture combined with confidence measurement determined by distances between vectors in the latent space. Our results show that the mean absolute error for cells with high prediction confidence is 0.05 and the 90th percentile mean absolute error is 0.1, where the range of DNA fragmentation score is [0,1]. In the future, this model may be applied to improve cell selection by embryologists during ICSI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.