Abstract

In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside the cask during NCT. Dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly.To further evaluate the intensity of contact interaction induced by the local contacts’ impact loading at the spacer grid, detailed models of the actual spring and dimples of the spacer grids were created. The impacts between the fuel rod and springs and dimples were simulated with a 20g transient shock load. The associated contact interaction intensities, in terms of reaction forces, were estimated from the finite element analyses (FEA) results. The bending moment estimated from the resultant stress on the clad under 20g transient shock can be used to define the loading in cyclic integrated reversible-bending fatigue tester (CIRFT) vibration testing for the equivalent condition. To estimate the damage potential of the transient shock to the SNF vibration lifetime, drop tests were performed on the CIRFT specimens. FEA was used to investigate the contact reaction at CIRFT test samples during impact loading induced by drop tests, and the result was compared with that from a 20g acceleration transient shock load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call