Abstract

Spent nuclear fuel comprises a wide range of irradiated isotopic material compositions, and characterization through nondestructive measurements is beneficial in verifying declared parameters before the fuel is placed in storage, final disposal, and/or reprocessed. This paper discusses results from three nondestructive assay instruments, including passive gamma, passive neutron, and active neutron methods, that measured fifty spent fuel assemblies at the Clab interim storage facility in Sweden. Integrated analysis of the measurements from the three different instruments allowed parametric assessments of cooling time, burnup, neutron multiplication, fissile mass, initial enrichment, and decay heat of each individual fuel assembly. Passive gamma measurements were found to be the most beneficial in predicting cooling time, passive neutron for determining burnup, active neutron in estimating initial enrichment, and both passive and total neutron for multiplication correlations. Fissile mass was best estimated using any combination of any two of the instruments such that corrections for isotopic changes in the fuel could be accounted for with the first set of measurements and multiplication of the assembly in the second. In conclusion, the nondestructive assay technologies demonstrated through this effort enhance the characterization of spent nuclear fuel assemblies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call