Abstract

Leave-one-out Cross Validation (LOO-CV) gives an almost unbiased estimate of the expected generalization error. But the LOO-CV classical procedure with Support Vector Machines (SVM) is very expensive and cannot be applied when training set has more that few hundred examples. We propose a new LOO-CV method which uses modified initialization of Sequential Minimal Optimization (SMO) algorithm for SVM to speed-up LOO-CV. Moreover, when SMO’s stopping criterion is changed with our adaptive method, experimental results show that speed-up of LOO-CV is greatly increased while LOO error estimation is very close to exact LOO error estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.