Abstract

Multiphase fluid flow in porous media is important to a wide variety of processes of fundamental scientific and practical importance. Developing a model for the pore space of porous media represents the first step for simulating such flows. With rapid increase in the computation power and advances in instrumentation and imaging processes, it has become feasible to carry out simulation of multiphase flow in two- and three-dimensional images of porous media, hence dispensing with development of models of pore space that are based on approximating their morphology. Image-based simulations are, however, very time consuming. We describe an approach for speeding-up image-based simulation of multiphase flow in porous media based on curvelet transformations, which are specifically designed for processing of images that contain complex curved surfaces. Most porous media contain correlations in their morphology and, therefore, their images carry redundant information that, in the curvelet transform space, can be removed efficiently and accurately in order to obtain a coarser image with which the computations are far less intensive. We utilize the methodology to simulate two-phase flow of oil and water in two-dimensional digital images of sandstone and carbonate samples, and demonstrate that while the results with the curvelet-processed images are as accurate as those with the original ones, the computations are speeded up by a factor of 110–150. Thus, the methodology opens the way toward achieving the ultimate goal of simulation of multiphase flow in porous media, namely, making image-based computations a standard practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call