Abstract

We report on a source-code modification of the density-functional program suite VASP which benefits from the use of graphics-processing units (GPUs). For the electronic minimization needed to achieve the ground state using an implementation of the blocked Davidson iteration scheme (EDDAV), speed-ups of up to 3.39 on S1070 devices or 6.97 on a C2050 device were observed when calculating an ion–conductor system of actual research interest. Concerning the GPU specialty – memory throughput – the low double-precision performance forms the bottleneck on the S1070, whereas on Fermi cards the code reaches 61.7% efficiency while not suffering from any accuracy losses compared to well-established calculations performed on a central processing unit (CPU). The algorithmic bottleneck was found to be the multiplication of rectangular matrices. An initial idea to solve this problem is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.