Abstract

Recently, entropic descriptor based Monte Carlo (MC) hybrid reconstruction of the microstructure of a binary/greyscale pattern has been proposed (Piasecki 2011 Proc. R. Soc. A 467 806). We try to speed up this method applied in this instance to the reconstruction of a binary labyrinth target. Instead of a random configuration, we propose to start with a suitable synthetic pattern created by cellular automaton. The occurrence of the characteristic attributes of the target is the key factor for reducing the computational cost that can be measured by the total number of MC steps required. For the same set of basic parameters, we investigated the following simulation scenarios: the biased/random alternately mixed #2m approach, the strictly biased #2b and the random/partially biased #2rp one. A series of 25 runs were performed for each scenario. To maintain the comparable accuracy of the reconstructions, during the final stages the only selection procedure we used was the biased one. This allowed us to make a consistent comparison of the first three scenarios. The purely random #2r approach of low efficiency was included only for completeness of the approaches. Finally, for the conditions established, the best single reconstruction and the best average tolerance value among all the scenarios were given by the mixed #2m method, which was also the fastest one. The slightly slower alternative #2b and #2rp variants provided comparable but less satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.